- 博客(192)
- 收藏
- 关注
原创 Deepseek技术浅析(四):专家选择与推理机制
DeepSeek 的整体架构可以概括为“专家混合模型”(MoE)专家网络(Expert Networks)定义:多个独立的子网络,每个子网络擅长处理特定类型的任务或数据。特点:每个专家网络可以是不同类型的神经网络架构,例如前馈网络(Feedforward Network)、卷积神经网络(CNN)、循环神经网络(RNN)、Transformer 等。数量:通常有数十到数百个专家网络,具体数量取决于任务复杂度和计算资源。门控网络(Gating Network)定义。
2025-02-05 23:10:03 820
原创 Deepseek技术浅析(三):训练方法
Deepseek 是一个先进的深度学习平台,其训练方法涵盖了多种前沿技术,包括 分布式训练、混合精度训练、强化学习与多词元预测、持续学习与微调 以及 人类反馈的强化学习(RLHF)。分布式训练通过将计算任务分配到多个设备(如 GPU、TPU)或多个节点上,加速模型训练。数据并行是最常见的分布式训练方法,将数据分片分配到多个设备上,每个设备计算梯度并同步更新模型参数。数据并行的梯度更新公式为:其中: 是模型参数。 是学习率。数据分片:将训练数据分片分配到多个设备上。梯度计算:每个设备计算本地梯度。梯度同步:通
2025-02-05 18:08:17 507
原创 启元世界(Inspir.ai)技术浅析(四):演化学习
启元世界(Inspir.ai) 的 演化学习技术 是一种基于生物进化原理的优化方法,通过模拟自然选择、变异和交叉等过程来优化模型或策略。演化学习的核心组件包括 种群(Population)、适应度函数(Fitness Function)、选择(Selection)、变异(Mutation) 和 交叉(Crossover)。演化学习的核心思想是通过模拟生物进化过程,逐步优化种群中的个体(如模型参数或策略)。其基本流程包括:种群初始化:生成初始种群。适应度评估:计算每个个体的适应度。选择与繁殖:根据适应度选择优
2025-02-04 19:31:34 207
原创 启元世界(Inspir.ai)技术浅析(三):模仿学习
启元世界(Inspir.ai) 的模仿学习技术(Imitation Learning)是一种通过模仿专家行为来训练智能体的方法,广泛应用于机器人控制、自动驾驶、游戏 AI 等领域。模仿学习技术主要包括 专家演示(Expert Demonstration)、行为克隆(Behavior Cloning) 和 逆强化学习(Inverse Reinforcement Learning,IRL)。专家演示是模仿学习的基础,通过收集专家的行为数据(如状态-动作对)来指导智能体的学习。专家演示的核心思想是通过记录专家在特
2025-02-04 16:37:33 306 1
原创 The Simulation技术浅析(四):随机数生成
随机数生成技术 是 The Simulation 中的核心组成部分,广泛应用于蒙特卡洛模拟、密码学、统计建模等领域。随机数生成技术主要分为 伪随机数生成器(PRNG,Pseudo-Random Number Generator) 和 真随机数生成器(TRNG,True Random Number Generator)。伪随机数生成器通过确定性算法生成看似随机的数列。由于算法是确定性的,PRNG 生成的数列是可重复的。PRNG 的核心思想是通过一个初始种子(Seed)和确定性算法生成随机数列。PRNG 的生成
2025-02-03 21:56:47 186
原创 The Simulation技术浅析(三):数值方法
The Simulation ,通常涉及使用数值方法对物理、工程或金融等领域的问题进行建模和求解。数值方法是解决复杂数学问题的关键技术,常见的数值方法包括 有限差分法(FDM)、有限元法(FEM) 和 蒙特卡洛方法(Monte Carlo Method)。有限差分法是一种用于求解微分方程的数值方法,通过将微分方程离散化为差分方程来近似求解。有限差分法的核心思想是用差分近似微分,将连续的微分方程转化为离散的代数方程。对于一维函数 ,其一阶导数和二阶导数可以用差分近似:离散化:将求解域划分为离散的网格点。在每个
2025-02-03 20:11:03 146
原创 笔灵ai写作技术浅析(四):知识图谱
知识图谱(Knowledge Graph)是一种结构化的知识表示方式,通过将知识以图的形式进行组织,帮助AI系统更好地理解和利用信息。在笔灵AI写作中,知识图谱技术被广泛应用于结构化组织各种领域的知识,使AI能够根据写作主题快速获取相关的背景知识、概念关系等,从而为生成内容提供知识支持,增加内容的准确性和丰富性。
2025-02-02 23:33:21 222
原创 笔灵ai写作技术浅析(三):深度学习
笔灵AI写作的深度学习技术主要基于Transformer架构,尤其是GPT(Generative Pre-trained Transformer)系列模型。Transformer架构由Vaswani等人在2017年提出,是GPT系列模型的基础。它摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),完全依赖自注意力机制(Self-Attention)来处理序列数据。自注意力机制是Transformer的核心,它允许模型在处理每个词时考虑到句子中的所有词,从而捕捉长距离依赖关系。公式:给定输入序列 ,其
2025-02-02 23:01:10 230
原创 即梦(Dreamina)技术浅析(四):生成对抗网络
即梦(Dreamina) 的生成对抗网络(GAN,Generative Adversarial Network)技术是其核心功能之一,用于生成高质量的图像、文本和视频内容。GAN 是一种深度学习模型,由生成器(Generator)和判别器(Discriminator)两部分组成,通过对抗训练的方式不断提升生成内容的质量。GAN 的核心思想是通过生成器(Generator)和判别器(Discriminator)的对抗训练,使生成器能够生成逼真的数据。生成器的目标是生成与真实数据分布一致的样本,而判别器的目标是
2025-02-01 13:25:38 361
原创 即梦(Dreamina)技术浅析(三):数据库与存储
用户数据存储:存储用户的基本信息、行为数据、偏好设置等。生成内容存储:存储用户生成的内容(如图像、文本、视频等)。模型参数存储:存储 AI 模型的参数和训练数据。每个模块都依赖于高效的存储技术和数据库系统,以下将逐一详细讲解。NI。
2025-02-01 11:42:31 198
原创 讯飞绘镜(ai生成视频)技术浅析(四):图像生成
文本理解与视觉元素提取:解析脚本中的场景描述,提取关键视觉元素(如人物、场景、物体等)。视觉元素生成:根据文本描述生成具体的视觉元素(如人物、场景、物体等)。分镜画面生成:将视觉元素组合成连贯的分镜画面。画面优化:对生成的分镜画面进行后处理,提升视觉效果。
2025-01-31 17:54:17 719
原创 讯飞绘镜(ai生成视频)技术浅析(三):自然语言处理(NLP)
语义分析:理解用户输入的文本,提取关键信息(如实体、事件、情感等)。情节理解:分析文本中的故事情节,识别事件序列和逻辑关系。人物关系建模:识别文本中的人物及其关系,构建人物关系图。场景生成:根据情节和人物关系生成场景描述。每个模块都依赖于先进的深度学习模型和算法,以下将逐一详细讲解。
2025-01-31 10:30:18 423
原创 讯飞智作 AI 配音技术浅析(二):深度学习与神经网络
WaveNet是一种基于卷积神经网络的声码器,能够生成高保真度的语音波形。其主要优势在于能够捕捉语音中的细微变化,生成非常自然的语音。模型基于 Transformer 架构,利用自注意力机制(Self-Attention)捕捉文本与语音之间的长距离依赖关系,生成更加自然的语音。
2025-01-30 20:29:12 1518
原创 讯飞智作 AI 配音技术浅析(一)
讯飞智作 AI 配音技术作为科大讯飞在人工智能领域的重要成果,融合了多项前沿技术,为用户提供了高质量的语音合成服务。:使用提取的语音特征和文本数据进行模型训练。:对生成的语音信号进行后处理,包括去噪、增益调整、混响等,以提升语音的自然度和清晰度。:通过调参、正则化等方法,对模型进行优化,以提高语音合成的质量和稳定性。:从预处理后的语音数据中提取声学特征,如音素、音节、语调、语速等。:对输入的文本进行规范化处理,包括数字、缩写、特殊符号的处理。:将预处理后的文本输入到训练好的模型中,生成相应的语音频谱。
2025-01-30 15:59:04 536
原创 Deepseek技术浅析(二):大语言模型
DeepSeek 作为一家致力于人工智能技术研发的公司,其大语言模型(LLM)在架构创新、参数规模扩展以及训练方法优化等方面都达到了行业领先水平。
2025-01-29 20:57:13 1693
原创 Deepseek技术浅析(一)
DeepSeek 是北京深度求索人工智能基础技术研究有限公司推出的人工智能技术品牌,专注于大语言模型(LLM)的研发与应用。其技术涵盖了从模型架构、训练方法到应用部署的多个层面,展现出强大的创新能力和应用潜力。以下将详细介绍 DeepSeek 的核心技术、工作原理以及具体实现方式。
2025-01-29 16:55:03 3178
原创 启元世界(Inspir.ai)技术浅析(二):深度强化学习
深度强化学习(Deep Reinforcement Learning, DRL)是启元世界在人工智能领域的一项核心技术,广泛应用于游戏AI、智能决策等领域。
2025-01-28 16:36:42 638
原创 启元世界(Inspir.ai)技术浅析(一)
启元世界(Inspir.ai)作为全球领先的通用人工智能平台公司,自2017年成立以来,一直致力于通过人工智能技术提升产业效能和生活体验。公司汇聚了来自全球顶尖公司和高等学府的技术专家,专注于深度强化学习、推荐算法以及机器学习系统平台等前沿领域,并成功将人工智能技术应用于数字娱乐、智能决策和机器人等多个领域。
2025-01-28 10:26:17 529
原创 The Simulation技术浅析(二):模型技术
物理模型基于物理定律和原理,通过模拟现实世界中物理系统的行为和相互作用来构建模型。物理模型通常用于工程、物理和化学等领域,用于预测系统在不同条件下的表现。数学模型使用数学方程描述系统行为,通常基于物理定律、化学反应、经济规律等。数学模型可以是确定性的(输入与输出之间存在确切关系)或随机的(存在概率关系)。统计模型基于数据统计特性,用于描述变量之间的关系、预测趋势和模式识别。统计模型通常用于数据分析、机器学习和预测等领域。混合模型结合了物理模型和数学模型的优势,用于处理复杂系统,例如半实物仿真系统。
2025-01-27 20:20:36 223
原创 The Simulation技术浅析(一)
模拟技术(The Simulation)是一种利用计算机程序对现实世界中的过程、现象和系统进行仿真的强大工具。它广泛应用于科学、工程、商业和政府等多个领域,帮助人们解决复杂问题、预测未来趋势并优化决策。以下是对模拟技术的详细解析,涵盖其核心概念、工作原理、具体实现以及优势与挑战。模拟技术的核心在于构建一个能够反映现实世界复杂性的模型,并通过计算机程序对其进行仿真。以下是模拟技术的五个关键概念:1.模型(Model):2.数值方法(Numerical Methods):3.随机数生成(Random Numbe
2025-01-27 10:36:58 101
原创 笔灵ai写作技术浅析(二):自然语言处理
词法分析是NLP的第一步,主要任务是将连续的文本分割成有意义的单元(词或词组),并对这些单元进行标注,如词性标注(POS tagging)。词法分析的质量直接影响后续的句法分析和语义理解。句法分析的任务是确定句子的句法结构,即句子中词与词之间的语法关系。这包括短语结构分析和依存句法分析。语义理解的任务是理解句子的含义,包括词义消歧、语义角色标注和语义关系抽取等。语言模型的任务是预测下一个词或句子的概率分布。它是NLP中生成文本的基础。
2025-01-26 23:21:05 651 1
原创 笔灵ai写作技术浅析(一)
笔灵AI写作是一款基于人工智能技术的智能写作工具,旨在通过自动化和智能化的方式,帮助用户高效地创作高质量的文章、故事、新闻报道等内容。它融合了自然语言处理(NLP)、深度学习、知识图谱等多种前沿技术,为用户提供全方位的写作支持。以下是对笔灵AI写作的详细技术剖析、工作原理以及具体实现的介绍。
2025-01-26 16:06:52 105
原创 即梦(Dreamina)技术浅析(二):后端AI服务
文本处理模块的主要任务是将用户输入的文字提示词转换为机器可以理解的向量表示。这一过程包括分词、词嵌入和语义编码,旨在捕捉文本的语义信息,为后续的图像和视频生成提供准确的指导。
2025-01-25 19:13:31 457
原创 即梦(Dreamina)技术浅析(一)
1.技术架构与核心组件2.生成模型的具体实现3.多模态融合技术4.训练数据与模型优化5.用户交互与创作流程6.技术挑战与解决方案7.未来发展方向即梦的技术架构可以分为以下几个核心组件:功能模块:技术实现:功能模块:技术实现:功能模块:技术实现:即梦的生成模型主要基于生成对抗网络(GAN)和变分自编码器(VAE)等深度学习技术。以下是具体实现细节:基本原理:实现细节:基本原理:实现细节:基本原理:实现细节:即梦采用了多模态融合技术,将文本和图像信息结合起来,生成更符合用户需求的视觉内容。具体实现包括:数据来源
2025-01-25 17:09:38 283
原创 讯飞绘镜(ai生成视频)技术浅析(二):大模型
1.讯飞星火大模型的基础架构2.自然语言处理(NLP)技术的具体实现3.脚本生成的具体过程与模型公式4.分镜生成的具体过程与模型公式5.视频生成与编辑的技术细节6.关键技术公式的详细推导与解释讯飞星火大模型是基于Transformer架构的深度学习模型,具有强大的自然语言理解和生成能力。以下是其基础架构的详细组成部分:Transformer模型由多个相同的层(Layer)堆叠而成,每个层包含两个子层:此外,每个子层都采用了残差连接(Residual Connection)和层归一化(Layer Normal
2025-01-24 21:55:42 734
原创 讯飞绘镜(ai生成视频)技术浅析(一)
讯飞绘镜(也称为星火绘镜)是科大讯飞推出的一款基于人工智能技术的短视频创作平台,旨在通过先进的AI技术简化视频创作流程,让用户能够轻松将创意转化为高质量的视频内容。
2025-01-24 19:00:34 176
原创 InVideo AI技术浅析(五):生成对抗网络
特效生成是计算机视觉中的高级应用,旨在通过算法生成高质量的视觉特效,如风格迁移、图像到图像的翻译等。图像增强是计算机视觉中的重要任务,旨在提升图像的质量,如超分辨率重建、去噪、图像修复等。生成器负责生成逼真的图像,判别器负责区分生成的图像和真实的图像。SRGAN 是一种用于图像超分辨率重建的 GAN 模型,其基本思想是通过生成器和判别器的对抗训练,生成高分辨率的图像。CycleGAN 是一种用于图像到图像翻译的模型,其基本思想是通过循环一致性损失实现无监督的图像翻译。 是特征图的尺寸。
2025-01-19 19:50:37 308
原创 InVideo AI技术浅析(四):机器学习
视频剪辑与合成是视频编辑中的核心任务,旨在将多个视频片段、音频和字幕等元素组合成一个连贯且富有吸引力的视频。其核心目标是提升观众的观看体验,确保视频的节奏紧凑、内容连贯。音频处理是视频编辑中的重要组成部分,旨在提升音频的质量,确保音画同步,并添加合适的音效和背景音乐。在视频剪辑中,LSTM 可以用于捕捉视频的时间依赖关系,识别重要情节和过渡。WaveNet 是一种用于音频生成的深度学习模型,能够生成高质量的音频信号。在视频剪辑中,RL 可以用于学习最佳的剪辑策略,以最大化观众的观看体验。
2025-01-19 15:42:57 350
原创 InVideo AI技术浅析(三):计算机视觉
图像识别与分类是计算机视觉的基础任务,旨在将输入的图像自动分配到预定义的类别中。生成器负责生成逼真的图像,判别器负责区分生成的图像和真实的图像。YOLO 是一种实时目标检测模型,其基本思想是将图像划分为多个网格单元,每个网格单元负责预测目标的位置和类别。CycleGAN 是一种用于图像到图像翻译的模型,其基本思想是通过循环一致性损失实现无监督的图像翻译。:对每个目标生成一个二进制掩码,精确分割目标的边界。:确保源域图像和生成的目标域图像之间的一致性。:使用判别器区分生成的图像和真实的图像。
2025-01-18 19:35:24 1008
原创 InVideo AI技术浅析(一)
InVideo AI 是一款基于人工智能的在线视频制作工具,旨在简化视频内容创作过程,并帮助用户快速、高效地制作出高质量的视频。
2025-01-15 19:53:03 497
原创 Opus Clip AI技术浅析(六):病毒式传播优化
病毒式传播优化模块旨在分析和优化视频内容,以提高其在社交媒体和其他平台上的传播潜力。该模块通过分析视频的多个方面,如内容新颖性、情感共鸣、视觉吸引力和音频质量,生成一个“传播潜力得分”,并提供具体的优化建议,帮助用户制作更具吸引力的视频内容。:对训练数据进行清洗和预处理,包括缺失值处理、归一化等。:使用训练数据训练机器学习模型,优化模型参数。:使用验证集评估模型性能,调整模型超参数。
2025-01-14 19:30:29 921
原创 Opus Clip AI技术浅析(五):视频编辑与优化
裁剪与合并模块允许用户对选定的视频片段进行裁剪和合并操作,以调整视频的长度和内容。过渡效果模块在视频片段之间添加过渡效果,使视频更加流畅和吸引人。过渡效果可以增强视频的视觉体验,并使不同片段之间的切换更加自然。字幕的生成和添加可以提高视频的可访问性和用户体验。填充词去除模块自动删除视频中的填充词(如“嗯”、“啊”等),使视频中的对话更加干净和流畅。:使用FFmpeg将排序后的视频片段合并成一个完整的视频。:根据合并顺序对视频片段进行排序。:将裁剪后的视频保存为新的文件。:将合并后的视频保存为新的文件。
2025-01-13 17:49:31 653
原创 Opus Clip AI技术浅析(四):片段选择与重新排列
亮点分数计算模块的目标是为每个视频片段分配一个综合分数,以量化其作为精彩片段的潜力。片段重新排列模块的目标是根据时间顺序或预设的故事线,将选定的片段重新排列成一个连贯的顺序,以确保视频的逻辑性和流畅性。片段选择模块的目标是从所有视频片段中选择最吸引人的片段,并确保所选片段能够组成一个连贯且有吸引力的短视频。:将各因素的归一化得分与对应的权重相乘,然后进行加权求和,得到每个片段的亮点分数。:将排序后的片段组合成一个连贯的短视频。:将排序后的片段组合成一个连贯的短视频。:将选定的片段组合成一个短视频。
2025-01-12 16:43:19 653
原创 Opus Clip AI技术浅析(三):AI分析与亮点识别
将对齐后的人脸图像输入到FaceNet模型中,提取128维的特征向量,并与数据库中的已知人脸特征进行比对,完成身份识别。音频分析模块旨在分析视频中的音频内容,识别出重要的对话、背景音乐和音效。:对每一帧视频应用DeepLabv3模型,生成场景分割结果,识别出场景的类别和边界。场景分析模块旨在识别视频中的不同场景,并检测场景的变化和重要事件的发生。:将分割后的场景图像输入到ResNet模型中,识别出场景的具体类别。:通过比较连续帧的场景类别,检测场景的变化和重要事件的发生。
2025-01-11 18:47:26 1253
原创 Opus Clip AI技术浅析(二):上传与预处理
上传的视频文件通过安全的传输协议(如HTTPS)传输到服务器,确保数据的安全性和完整性。后端服务器接收到上传请求后,首先进行文件类型和大小校验,然后将其存储在临时存储区域(如临时文件系统或对象存储的临时桶)。数据存储是将处理后的视频帧和音频数据存储到数据库或文件系统。视频解码是将压缩的视频数据转换为原始帧和音频数据的过程。帧提取是从解码后的视频中提取出每一帧的图像数据。: 将处理后的音频数据存储在数据库或文件系统中。: 将压缩的视频数据解码为原始帧数据。: 将提取的帧存储在内存或临时文件中。
2025-01-10 09:00:33 759
原创 Opus Clip AI技术浅析(一)
Opus Clip AI 是一款由Opus公司推出的AI视频剪辑工具,旨在通过人工智能技术简化视频编辑过程,帮助用户快速从长视频中提取精彩片段,并生成适合社交媒体分享的短视频。
2025-01-09 19:57:18 1117
原创 Synthesia技术浅析(四):自然语言处理
Synthesia 的自然语言处理(NLP)模块是其核心技术之一,涵盖了文本转语音(TTS)、情感分析以及多语言支持等多个方面。
2025-01-06 15:30:53 877
PyTorch与Tensor 深度学习基础源代码
2025-02-05
TensorFlow图像分类算法
2025-02-02
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人